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ABSTRACT

The SPM equation has been recoded for the IBM-7090.
Both theoretical énalysis and some numerical results are given

and discussed.

This technical documentary report has been reviewed and is
aporoved, 7

RIGHARD J. VOSSLER Capt, USAF
CHief, Radiation Branch

Physics Laboratory

Directorate of Materials & Processes

111

T i i



TABLE OF CONTENTS

Section Page
I Introduction. M R R EEEEREEEER NN NN I I NN N N N N N R S A R R NN N I 1
II mlysis of the sPM Equation. ® 9 6 0 00 5000 000 600000 2
A. Primitive SPM Equation for Variable Cross-
sections.. ® 9 0 0 8 0 0 0 8 O S OSSO0 00O SN NS SO OSS0 eSO SRGe 2
B. The Truncated SPM Equation and the Expression
for the mlrrent ® 0000000000 00 ® S © ¢ 060 00000290 e N 6

C. Interface ConditionS8..ccccececesnceccscnceccsans 10
D. me constants cm............‘l..l. ...... e o8 0 0 00 12

E L h me calculation Method ® @ 0O 6009 S0 OSSO OO eS OO 15

F L] so‘lrce %ndi tions ® 8 & 0 0 606580908 00006000 0050800000 _22

G . Boundary conditions ® 0 9 00 000 PSS OS OO e e 00 ¢ 00 0 27

III Résults......Q.'......'..........................". 35
A. carbon ...... ® 0 8 ¢ 55 00 00 050080000000 e * S 000000 00 35

B. nydrogen. ® & 8 08 O 0 "0 OSSO E s 00 eSS eSS ® ® 0 ¢ 5 00500008900 41

C. Modification of Diffusion Theory Current
by sm.l.........l‘.l‘....l........O....Q........ 42
IV Operating Instructions - SPM Code.....cccvceesvcnee 45

A. Changing Tape DesignationS......ccccceseeeeeces 45
B. Operation Instructions for a Problem Run....... 46

v Sm wtput.......‘. ......... e & @ @0 ® 6 8 009 0000 0900 8s e 57
\'2¢ GENUC - Cross Section Processing Program........... 58
A. P\lrpose.‘l..‘.. ....... @ 8 0.0 05 00 0006060 90 008008000 ee 58

B * Tape Unit usignations ® & 0 6 5 6060 0800 08000 q 00 .-. L) 58

C. Input Preparation and Restrictionms..... cesesees 59

GENUC Definitions. ® 0 © 0 00 P S G OO OO S D OSSOSO e OSSOSO OSSO 60

mltput of GENUC Program. ® @ 0 0 0 6 8 8 OO OO0 H OSSO S BS NN RDS 63

Refetences.o....o..o.oooo..olc‘...looooo.nc.q.ooo... 64

iv



N et i,

LIST OF TABLES

Table
I Diffusion Theory Flux (A = 12)....ceceeeenns ceees

I Kaper's Approximation for Flux (A = 12)..........
II1 SPM Flux (A = 12) - With Third Order Terms.......
v SPM Flux (A = 12) - Without Third Order Terms....
v Effect of Higher Order Terms on the Current......

Page
37

38
39
40
44



s i, i et e <

I, Introduction

The aim of the present program was to program the
Stochastic Process Method (SPM[)1 for neutron problems and to
investigate the method both theoretically and numerically. We
have been able to analyze the problem sufficiently to determine
proper source and interface conditions, as well as appropriate
methods of treating scattering by hydrogen and inelastic
scattering by heavy elements within the spirit of the method.

In this report are presented the SPM equations with
boundary conditions, a discussion of some of the results, and
operating instructions for the IBM-7090 SPM code and for the

auxiliary input code GENUC.

Manuscript released by the authors April 1962 for publication as an ASD
Techmical Documentary Report.
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II.

A.

Analysis of the SPM Equation

Primitive SPM Equation for Variable Cross-Sections

An SPM equation can be derived for cross sections which vary

in space and energy. The previous derivation was valid only for

constant cross sections. We now derive the new result.

Here

The integral Boltzmann equation can be written

%o~ u 1 ri1
- a(x,u)@(x,u) = wo“(x,u) + 217 dx§ du'j du.‘[ du* g(x,u) H(x;x')
o -1 1

1

x _1 27
x exp'{ - 111 S o (x",u) dx'}S dv dp & U'u"L(V)] X
x! -1 o ’

x 6(u-u'v - 1i-u'2 qi-v2c03¢) os(x',uiV)¢?x',0',u’)- (1)

x = distance from source plane

u = lethargy

p = cosine of angle with normal to soutrce plane

v = cosine of scattering angle

@ = azimuthal angle of scattering

o(x,u) = total macroscopic cross section at x and u

as(x,u,v) = macroscopic differential elastic scattering
cross section at x and u for scattering through an angle
whose cosine is v, per unit solid angle

P(x,u,u) = flux at (x,u,u) per unit lethargy and solid angle
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L(v) = increase in lethargy accompanying scattering through

an angle whose cosine is v

¢°(x:“) = density of first collisions at x and u per unit
volume, time, and lethargy

Primed variables refer to the situation before collision.
Also, @(x,u) is the total flux at x and u per unit lethargy:

1
P(x,u) = 26 P(x,u,n) du (2)
{1

and H(¢) is a step function:

H(E) = lr E > 0
=0, &< O.
Let the total number of mean free paths at lethargy u between

(3)

0 and x be

(4)

s(x,u) = o(x'",u)du".
o

s is thus a function of x with parameter u and conversely, x is a

function of s. We will also use the notation

(5)

s' = s(x', u).

—————os(x e ,‘V) A¢(X',U':u-') = f(x'(s'), U',U‘:V:u') = g(s')‘

OS(X',U)

(6)




By Taylor's expansion,

n
g = = L (s-9)" - g(s, )
n=0 n! s _

where by (6),

cs(x,u',V)

'—‘1¢(xlu.:u')' (8)

g(s) = £(x(s), u',u,v,u') = ——rg
s "’

We have also

HER) = wED. (9)

Then the x' - integral in (1) can be written

o X
So’l(:iu) H(x X )expi - %Sx'o(xll,u)dxl} US(X',UJV) ¢(xv’u‘v,uv)dx| =

CintM og(x',u,v)

= o(x,u) dev WL REEY o B Sy P un)

1 3 - 55 nan

‘ ds' ., ,s-s' T Teed o

= o(x,u) nio = I”l H(E)e (s'-s) o g(s)

- 5D Wotw T gs). (10)
n=0 ds

The second equality in (10) holds by virtue of (4), (6), (7),
and (9). But by (4),

9 1 o) ‘
3% = Tw % b

80

q(x,u) 8(8) = g(x,u) [m 3—] 2&‘;’;’—)’-\-’)— P(x,u",u') =

.[& m] O'-S(X,U':V)¢(,x:u':u-')' (12)
4
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Inserting (12) into (10) and then (10) into (1), we have

n=0

| 1 1 2T
o(x,w)B(x,0) = Yo(x,u) + 2% <-1)“5 du'j dv& ap'\
-1 -1 0

n ( .
X [%; ?(ilT,TIT] u.n 5 (u-ptv - \Ll-u'z \Jl-vzcos¢) 6 E-u'-L(v)] x
X og(x,u,v)@(x,ur,ur). , (13)

We now expand off about u:

m ym o (x,u,v)

oD
1
v r = —_— - - . ) D ) ‘
og (x,u’,v)@(x,ur,ur) mio " (ur-u) S8 0, (5 0) 0 (¢, u) B (x, u)M(u" [x,1
(14)
where os(x,u) is the elastic scattering cross section at x and u:
1 .
os(x,u) = ZTj as(x,u,v)dv (15)
-1

and

M(ur

x,u) = %T—)—lx;{u&u' . (16)

Inserting (14) into (13), integrating over u' and p, and then

dropping the prime on p', we have the SPM equation:

-O(x,u) = P, (x,u) +
n
¥ mio nio m! Ea’_( G(x, U)] aum‘ cmn (x’ u) ¢ (x) U)‘ ’

(17)
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where

Cmn (x, u) =

1 1 2m
n
= 2‘f§ M{ul x, u) duj L™ (v) -Sa(Tx:%;—)- dV( EW "'\!1_‘9-_2'\]1"’2‘:”{! dg.
Jon _

-1 -1
(18)

Equations (17) and (18) are precisely the same relations as for cons:tant
cross sections, except that now we must make sure that the o¢(x,u) are
placed as given in (17), since ¢ no longer commutes with the derivatives.

If the medium consists of a number of nuclides, each has its own
mn

C_.. The appropriate generalization retains eq. (17) with cmn defined

by the relation

i i
Con% = ? Con %5 (19)
where
osl = macroscopic scattering cross section for iEE nuclide
i
o, = 220

and C;n‘is defined by eq. (19) with the cross sections osi being used.

Note that Coo = 1,

B. The Truncated SPM Equation and the Expression for the Current
To second order in both x and u, the SPM equation (17) reduces

in the absence of a source ¥, to

1 b o 1 9 13 1
- (o 0)¢ 00‘¢+'2'$2'C200¢ &--&C010¢+§£—°—'&EC020—S¢‘+
2
3 13 3 13 133 13 13
+ 3% 930 ©11%? - 3% 7 3% ¢ 3u C12 °s¢'23-a-—2021° +
2
13 13 13 |
*IRM oo g2 C22 %P = O (20)
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It was shown in the original summary reportl that the current J

obeys the equation

Ly = ™M1y 1 N
ox mzo nil i 9x o(x,u) Sa Con 959 (2%

where we have used the general form (17) of the SPM equation.

- n

In the order to which we are truncating, we can then write

2
1} d 1 d 9 129 _1le
J="‘I;:‘:m *3%x 0 %2 *3u -T2 73;"021
2
1 3 13 7
+-2- &ES—?CZZ_' Os¢- (22)
Now let
c

Co1 55 = v <> = v % . (23)

Vi is defined here somewhat differently from the way in which it was
defined previously.l
Then

2
- (l-Vo) J - ~a—- (vlo J) + 5—2' (VZO'J) =

L3 11, ¢ -2 (c ¢)+182 (C),0_B) (24)
=93} o [“02 % du ‘*12 % 732 229¥7 ) -
Suppose that successively higher u-derivatives correspond to
successively higher powers of some small parameter A. Thus if some
quantity £ is of order unity [§(1i1

dNf
un

Expand J in orders of A such that J, = O(An). Then to second order,

= o(\™




Again to second order, (24) becomes

2
12 sy 4L 2 |
“(A-vgd Ut Iy 3p) - 5 et V100D + 5 57 (Vo9 -

13 1 S d 1 32
"X {"oz"s¢ - 35 0Pt 7 7 (C'zz%‘”]- (26)
Then
10 1
- (1'vo)Jo =5 3% 5 02 °s¢ @7
19 10 190
- Av)I - 55 (9 J) = - 5% 5 36 C12 %P (28)
123 1 32 13 1232
- (l-vo)Jz' 7 3 (VIO'JI) + 35 EZ(VZOJO) = 7 3x g 'a—uz- szdsﬁ.
(29)
From eqs. (27)-(29), we get
1 193 1
Jo = " T=- 5 & 5 029" (30)

1 1 {3 109 3 V1 31
Jl = I-vo 2 [3? o Ju C1208¢ * 3 1_-7; X C02°s¢] (31)
.1 1 [a 122 132 V9 3 1
J2 =, G [B'i o532 C2°? YT 2T 3% 5 Coo%sf t
u 0
3 Y1 Ja3 13 d V1 3 1
& Tov, % 5 38 ©12%P? * o T 3% 5 Co2%f (32)

Only for constant cross sections can expressions (30)-(32) be com-

bined to give a current of the form

=18 lpog+3 g+ 2 ¢ 33
I =-5m |P1%P tmm PP 57 3% (33)
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In the general case, we must use eqs. (25), (30), (31), and (32) to

give the expression for J. J is, of course, taken to be continuous.

We obtain the truncated SPM equation in the form

- o - S a1¢+-§-§za2¢ -0 (34)
where

0 = 0 - o - @sa)

a; = Cyg0g ‘ (35b)

ay = 5 CpgT- (35¢)

Because the‘J2 term was found not to improve the results, the

approximation was actually cut off after Jl'




C. Interface Conditions

The conditions at an interface must be continuity of ¢ and

J, for all lethargies. It is necessary to see how this works out

in a difference approximation.

We assume an interface at x = 0. Then
2

R - ST
u

We will denote the value of J at the interface by Jo. 1f 5+ is

the x-interval to the first mesh point to the right of the interface

and 6_ that to the mesh point to the left, we have
Jo=J_+8J30, (37)

where
J_ = value of J at the first mesh point to the left

J! = average value of g% in left-hand interval.

The mean value of J in the left-hand interval is

T -3 3, +3). (38)
Then
I_-3, ,
L= —— = - 3) 39)
Similarly,
EHLE AR CAER AT (40)

10
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If o;, is the value of a; to the right of the interface and a,_
that to the left, we have
3 32 |
-6_ao_¢- E— 5_(11-¢ + 31—12- 5_az-¢ + 2(3_ - JO) = (Q (41&)
2
o) o) ‘ - -
-6, 55 54ap40 + o2 bap 8 + 203, -T) =0 (41b)
Defining
b,a,,+ 5 a
-t i+ -4 ‘
| 6, + 6. (42)
and adding the two equations (41 a,b) we have
-‘¢-aa¢+82 P +p—2e T -T) =0 (43)
%*" 3u 41 a2 %2 5, ¥ 5. - + .

Equation (43) is precisely what we have within a single medium,
Thus we can treat boundary points the same as any other points if we
define the o; at the boundary by eq. (42). The cross section-
dependent constants in J 4 are those appropriate to the right-hand
medium and those in J_ are those appropriate to the left-hand

medium, We can write

) o) ‘ /o) )
J = "'73 {35"‘ a3¢ - ‘5" 'Ya %ﬁ 0-4¢ - 5‘6 'YS SJ_( a3¢] ’ (41’)

where
S S .1
73 I-vo o a3 T 5 c02°s
1 = i
v, =3 a, = Cpy0, (45)
75 I-vo

11




Then in our difference approximation

) ‘
_ g O34 P41 - 934 Po Yy 3T %s PE1 T Var 3T U+ o

J,= 31 v - :
+ + '3+ 5t at
3 %34 841 - 934 b
T 3u Y5+ 5, ’ (4¢;
where
8, = B(x = 0)
0,1 = P(x +5,). (47)

Expression (46) is to be substituted into eq. (43).
Note that J is not assumed continuous across the boundary
J

. J_ -+ 0 for 5, > 0, 65_ > 0, but for a finite mesh, we do not use the

continuity of J as an explicit condition.
D. The Constants Cmn
We had
1 1 2T
m Us(x,u,;V) ‘ - 2 o 2 -n
cmn(x,u)= 2T M(qu,u)du | L (V)'3;T§TGT' dv Lgv+u1-u l-v cos?ﬁ dg.
-1 -1 o (18)

We assume that within a given medium Cyn 1s independent of x and

further, that M(ulx,u) is independent of u.

V= uv + Jl-uz dl-v2 cos @ (48)

We can expand

Let

n
Jo = 3 bnzPl(y). (49)

12
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1 v b i

2r 2r
- yn
‘ ap = ‘Z bnz\f P,(V)dﬂ -
=0 ° o

2
Z b [ P, ()42 3 BB m,] a9
=2 : Py(a) -
f=g 1. Py(a)P,(v) Z s (V)cos
o

= 2'rr:éobnz P, () P, ). (50)

The second equality arises from the addition theorem for Legendre
Polynomials.

We use also the inverse of (47):

! k
P,(w) = Z amu (51)
k=0

and define

™ =27 M(uu"du. (52)
-1

The differential cross section as a function of the cosine w
of the scattering angle in the center-of-mass system is expanded as

(¢ ©
os(u,m) - 0781-’_“—)320 (2£+1) fz(u)Pz(w), (53)

where os(u) is the total macroscopic scattering cross section at u,

from which it follows that f‘o(u) = 1. The relation between v and w
is such that
ois‘(u,v)‘dv - crs(u,a))dﬁ. (54)

13
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Thus we can write

1 1
Cp= MM dn\ L") k= ¥ 24YE, (WP, (2T Z £ 5 au¥s a_vP
" 1=0 r=0 ""k=0 * pwo P

-1 -1
a r r k
24+1) £ b
zz (24+1) (u)rio or Z%ep, 2, 8> g (55)
where
1
Jyom = L (v)vPp 5 (@) doo. (563
-1

For hydrogen the lower limit of the integral over w is zero.

We can write

| .
. Cmo =3 JcEO(Z.Z-I-I) fLJLOm (57)

1 % '
v, =7 250 (24+1) f.z Jlm (,58)‘

2 oo o J
Cag = L2 2 (24D, f2m " fom %—zzo(uﬂ)fz £0m

2 2
1- 3ps>-19 1
=gk 2+ —9‘72—150(14-2& 2 1om (59)

The sum over £ actually will be cut off at some value 4 = L. For an

isotropic flux, <u.2> = % and

1
Cn2 = 73 %o (59a)

J tpin is evaluated recursively in the code

14




P TR
€

E. The Calculation Method

We use three-point difference approximation formulas for
both first and second derivatives. For the first derivative we have
a weighted average of the forward and backward derivatives, thus:

91 (i1 -1 [_1, PP . 1L ¢k'¢k-l}
She\ars) s T AR TR

1 A_. A+ _ _1
5+ 5. |5 %l *\E "3 ) __'¢k-]:J’ (60)

>

x_s»
'
D‘ +>

where

value of %g‘at -

k
¢k = ¢(uk)
b, = W1 T Y
Al = Wy T %

For the second derivative we take a difference quotient between

the forward and backward first differences:

-1 , =

Qgg =<A++A-> [¢k+1’¢k RS |

d 2 ' A+ a_ ‘
k

u
= 2 _1 ¢ - /1_. + ..1_ ¢ + l'__ ¢ i 61
= B F A B, el T{ BT A7) Yk T B Pk-1 4 (61)

Suppose ¢jk is the flux at position mesh point j and lethargy

mesh point k. Let us define

15
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where

Then

L w7 L= rTwFEY
2 2 AN
1} H_ = (62}
+ 48, (84 a_(a,+ 4, /
yP— Sp—:
+ 5,675 - T B (6,5
by = X441 "~ ¥y
5. = Xy = xj-l
3
.5g w” N B ken - (4 1) By + 00, 4 (63a)
2
379 » |
'a:z = Ky ¢k+1‘- (U-+ + l-’ﬂ_) ¢jk + u_ ¢j,k-1 (63b)
Lk ]
2
b} .
X i
jk
d_ .3 2 [- ¢j+1,k'¢jk - ¢jk' ¢jfl,k
x Y Sg m S5 F 0. i+ B, Y- 5_ |

= MYier 501,k - O M M%) By ¥ A M85
(63d)

Y+ and‘yk_ are respectively the values of vy at lethargy k in the

right-and left-hand intervals.

16




The 1's, u's and A's are functions of j and k, though we omit

the indices for convenience. Our equations become

1 1

= i\
p=§1 qﬁ-l ®pq ¢j+p,k+q = Sjk ’ (64)

where Sjk is a source term, if any. Here the SPM differential equation

can be written

B e e

17

2
o, d 1,.99 2,.3 33 3, d .33 L3 &
aP-gap+ 32 P HSR Y OO Y Y ae?-
-5V EY &, (65)
where

L = o- o (66a)

1
a = cloos (66b)
2 - b, (569
3 = Ly, (664)
€129 (66e)
. l'Vo (66£)
2 (66g)

Vi

= (66h)

e i e e o




The a's and y's are constant within each region. The apq that

appear in eq. (71) are determined as follows:

3 4 5 3 )

= - b .
8y1,-1 = " N Y Oy %e1,+ F Yien, s %-1,1

P T Sy 5 3 '
81,1 = TWAYir Oy Oa1, 4 F Vi1, + %L, 4+
a = - L + z . a -a
o+l + Y+l T My Tl T %141 7,41

3 [3 b 4 .5 3.
ajl,o = xt ykt [éki + (N, + M) (ykt Oyt + yt akf{}

o 1 2
3,0 = "o ¥ My + ) = (uy + 1) o - 21,0 " %1,0

(67)
I1f we are not at a boundary point and if the spatial integration

mesh is constant in each region, then

a]-:q - a'l:q (68)

To solve eq. (64) we use a line relaxation method. The solution
goes as follows: Suppose we want ¢jk’ 0<j<J, 0k K. An
initial guess ¢§§)is made for ¢jk at all interior mesh points, i.e.,
for 1 < j £ J-1, 1<k <K-=-1. The conditions that the flux

vanish at the boundary are given by the expressions

(IljK =0 s 0igy (69a)
Pox = O , 1<k<K (69Db)
Poec = © , 1< kg k. (69¢)

¢jo is prescriﬁed.

18
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Given an estimate of the flux for lethargies (k-1) and (k+1),
we can get a new estimate for lethargy k'by the relation (64).

Then in the line relaxation procedure we get from eq. (64)

1

Jk g(1) (1) |
p-§1 apo j+p,k = &jk ’ (70)
where
e s - 3 ok gD Lok 461 _—
jk Sk g ®p,-1 Yi+p, k-1 ~ p=-1 #p,1 Pj+p,k+l

Ve have put indices j,k on the a-coefficients for explicitness. A
superscript (i) represents the iE-tl estimate of the flux. Ve start
with k=I1. ¢§i%,k-1 is then just the prescribed flux at u = 0. For

¢§+; 9 is the initial estimate. Thus g§i)can‘be determined from
eq. (71). Solving eq. (70) then gives ¢§i). The procedure is then
repeated with k=2, etc., down to k = K-1. We now have ¢§i)everywhere.
The process can clearly be iterated to give successively higher
approximations. It can be shown that if the process converges, it
converges to the correct answer.

The relaxation procedure could as easily have been carried out

along lines of constant x. The equations that then replace (70) and

(71) are
; aJk ¢(1) f(i) (72)
q=-1 jyk+q T “jk
. 1
(1) _ - Jk (i-1) alk  g(i)
Fiic= Sk "2 g a P51krq 72 %01, 0051, ke (3)

19
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We use row iteration, although a column iteration or alternate
row and column iteration are other possible procedures. Eqs. (70)

and (72) are of the form,

anwn_l + bn 'lpn + Cn wn-{-l = Qn . 0 <n< N. (74)
Eq. (74) is solved by use of two auxiliary parameters Z  and P

which are defined recursively as

Zn - En+':nzn-1 72
~a_ P
" Q}‘ o (76)
with
2, = P =0, o
Then
¢n = Pn 2, pn+1' (78)

Thus we have Po’ Z Given Pn-l’ Zh-l’ we can compute Pn’ Zn by

o
eqs. (75) and (76) out to n = N-1. ﬁN is known. Given ¢n+1’ we

can compute ¢n by eq. (78), back to n=l. Thus the ¢omplete solution
is given.

In a spatially symmetric situation, we take J = 0 along the

plane of symmetry, with -J < j < J. Symmetry implies that Ql K- 6;1 k
H ?

and that a, q = %1,q For relaxation along lines of constant

b} »
lethargy, we have to solve equations of the form (74) for 0 < n < N
with the added relation
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But because of the symmetry, a, = ¢, and V.1 = ¥ Thus

2a
C
Yo =5, " go-"- ¥ , (80)

Comparison with eq. (78) gives
- Po =5 (e1)

e (82)

¥, can then be found from eqs. (75), (76), and (78) for O < n < N.
Relaxation along lines of constant x can be carried out either
from N to O from O to N. However, for j = 0, eq. (23) becomes
1

ok
fox = Sok - qigl 41q ¢1,k+q'

(83)

The iEE estimate for ¢1 k+q is used in proceeding from K to 0. The
»

(,J'.--l)-s--ti estimate is perforce used if we proceed from 0 to K.
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F. Source Conditions
Assume we have a plane isotropic source 5(x)5(u) at u = 0.
For a uniform medium the- slowing down density at u = O can then bhe

written

q(x) = %-o E1 (olxl), (84)
since everything that scatters slows down at the collision point.
o is the cross section at u = 0. If there is little absorption near

the source energy, q(x) is nearly constant except near x = 0. But

éxcept immediately around u = 0, we have

q = £o@, (85)
where £ is the mean lethargy increase per collision.
Thus the flux is given correctly several £-units and more from the

boundary if we take

1 ‘
#(x,0) = 7z Ey (o || ). (86)
We use this as a boundary condition. It must be stressed that @(x,0)

is not a valid approximation to the flux very close to u = 0. It is

the condition that must be used with the SPM equation to give the flux

correctlv away from u = U. With this normalization both SPM and age

theory reduce to the same asymptotic result for large u, as they

should.
At an interface x, we get the condition by assuming that the
number of neutrons slowed down per unit time from u=o between x -€b_

and x°+eb+ is given correctly by assuming that the flux at u = 0
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is continuous and linear in the intervals (x -eb_,x,) and(x_,x_+ €5.).
5y and §_ are the distances from X, to the next mesh points to the
right and left, respectively. The natural requirement would be to let
€ = 1, but in order to get an expression which reduces to tlic correct
one when the media on the two sides of the interface are identical,

we let e approach zero. The precise condition at a single point Iz
not especially critical, in any case. Thus we write for the slowing

down density

o
+ ‘
qx) = 7 El(ls + o, (x-xo)l)., X, < x < x  + €5
0-
= 7 El(ls - 0_(xo-x) l) , x,"€6_ < x < X, , (87)
where
o, = total macroscopic cross section in interval x ¢ x < xo+<-:6+
g_ = total macroscopic cross section in interval x,~€6_< x < X,
s = total number of mean free paths between the origin and X,
We assume also that
q(x) = €,0,0(x) ; Xg < X < x_ + €b
= §_0_0(x) , x,-€6_ < X < X, (88)
Here
£, = mean lethargy increase per collision in interval X <x<X ted
¢_ = mean lethargy increase per collision in interval X, -€5_<x<X
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Then

A X +eb, X, 5 xof€5+o
- ' + e
q(x)dx = | 7 El(rs-o;(xo-x)l)dx+ — El(]s+o+(x-xo)§)d>
X, €6 _ X,-€5 X5
s+€0,5,
1 PR
=7 1 E]_(iyy)d}'° wesy
s-€0_b_
Also
xo+eb+ X, xo+€5+
S qx)dx = £_o_\ P(x)dx + £.0,. \ @ (x) dx. (90)
X,~€6_ X,"€5_ X,

Now in the limit ¢ - O, we get by equating expressions (89) and (90)

3 E (s) (0,8, + €0 6.) = B(x_) (et 0,5, + ¢ _0.5]) ,

or finally
1 0'+5++ 0 _6_ |
B(x;) = 7 Ey(s) €,0,6,F £.0.5_ ° (91)

For an interior point, this reduces to

d(x,) = 7 E (s), (92)
as expected.
The E; source gives a problem in a numerical calculation
because it is singular at the origin. The criterion we use to avoid
the singularity is that the total number of neutrons slowed down per

unit time from u = O in the interval -6_< x < &, is given by a
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three-point formula in terms of the continuous and piecewise linear
flux @#(x) at u = 0.
Thus eqs. (87) and (88) hold, with X, =0, s =0, € = 1.

6+ o 5+ ]
o_ ‘ O
j q(x)dx =J\ 7 El( ;o_xl)dx~+S 7 El( G.X Ydx
-5_ -5_ o

0_8_ 0,0,
1 1-E,(0_6_) 1-E,(0,5_;
=%-S El(y)dy +%- El(y)dy = ZT + 22 z
o o
-0_b_ T0,.5,
=-%- |:2 -e + 0_6_E (0 6 )-e + o+5+E1(o+5+)1
(93)
We have used the relations
oo
5 E; (Y)dy = E,(p) (94)
P
E,(0) =1 (95)\‘
P
| Ey(p) =e -p Ey(p) (96)
$ Also,
! A5, 0 5,
: S q(x)dx -.5 £_o_@(x)dx +S &+o+¢(x)d‘x
‘ -6 _ -6_ o
5_ 5 |
=€ 0. 7 [¢(-5_)‘ + ¢»(0)] + £,0, 2—"1@(0)+ @(s _,ﬂ
o7
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Since by assumption, ~-5_ and 5, are not-interface points,

D
o
-~

PG5, = G A5 = = B (0,5 &

and so equating the right-hand sides of eqs. (93) and (97) and
using (98), we have

-0 5 -0,6

1 -~ ++
7|2 -e + 0.6 _E (0.5 )-e + °+5+El(°+5+ﬂ

= %(g_a_6_+ £,6,) 9(0) + % 0.6_E;(0.8) + % 0,6,E; (0,8

or finally,

-0, 5

-0 b +

2-e T+ % 5_6_E;(0.5_)-2
£_0.05_ + g+c+5+

+ .1
g 0,8,E;(0,5))

#() = (99)

Eq. (99) gives the value we use for u = O at the origin.
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G. Boundary Conditions

Since we are working with an equation: essentially of the

\

elliptic type, we specify one boundary condiiion all around the
boundary. The computations use a rectangular re,.on {alx<b, O<u<uc).
The source condition at u=0 has been discussed. We use the condition
¢(x,uc) = 0 at the cutoff lethargy u,.- Itwas shown in the previous
summary report1 that the precise condition at u, does not nffect
the solution except in the immediate vicinity of u., if tne condition
is at all a reasonable one. The present spatial boundary conditions
are that the flux vanishes at a and b. One could use instead
derivative boundary conditions, i.e., that %% is equal to some

constant on the boundaries. This is, in fact, the condition on the line

of symmetry for the symmetrical case, where gg = 0.

H. 1Inelastic Scattering

Inelastic scattering must be treated as an absorption followed
by a reemission at a lower energy, as in multigroup theory. It
presents two problems, one intrinsic and one purely practical. The
practical problem is that of time and memory requirements in the

machine computation. We get an effective source of strength

S(x,u) = Sa(x; u', w@(x,ur)du’ , (100)

where

o(x;u',u) = inelastic macroscopic scattering cross section at x
for neutron of lethargy u' to scatter to u, per unit

lethargy range about u.
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S is treated as an inhomogeneous neutron source. The appropriate
term in the SPM equation is Voo the first collision density of neutrons

whose source strength is given by S.

Yoeow) = 7 o) \ Ej(ls]) stxt,waxr, (101)

X
s = 5 o(u,x")dx".
x'

Just as in multigroup diffusion calculations, however, we will not

where

take account of the transport of these neutrons between the point of
inelastic scattering and the point at which they next collide. That is,
we take
Vo(x,0) = S(x,u). (102)

This approximation eases the very considerable computation that would’
be required to use eq. (101).

The intrinsic problem with inelastic scattering lies in the fact
that any source in the interior of the u-interval, i.e., for u > O,
can propagate in both directions in lethargy. While the propagation
to lower lethargies is damped fairly rapidly with decreasing u, this
part of the contribution is certainly unphysical. Further, the flux
is not correct even above thfs interior source lethargy until about
an interval Au = ¢ away. It is certainly true, however, that if the
flux inelastically scattered to an interval whose width is of the
order of £ is small compared to that slowed down by elastic scattering,

the error is small. That is, in that interval the error is small by
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hypothesis, and in any case does not propagate very far. The latter
property implies that the error is not cumulative, but only local
so that it is limited in magnitude everywhere.

It should be remarked that these difficulties are present in
part in ordinary multigroup theory whenever the reclation. q = ¢off is
used to connect the slowing down density and the flux.

The code takes inelastic cross sections in two forms: either
as the cross section oin(u',E) at u' per unit final energy about E,
tabulated as a function of u' and E, or as an excitation cross section
fin(ul,Qi) tabulated as a function of u' and the excitation energy Q; -
In the available tabulated inelastic cross section data fin(u"Qi) may
be available as interpolated in the initial lethargy directly from
experiment, for the lowest excitation levels Q;- At higher incident
energies one resorts to calculated cross sections in the form cin(u',E).

In general, fin(u',Qi) may not sum precisely to the total observed

inelastic cross section at u' because of experimental inaccuracies.

We therefore define the normalized excitation cross section

9in (u)

gi(w = £ (u,Q) %’fZ;Tﬁjazy (103)
8; has the required property that

5 g;(w) = o5, (). (104)

i

°in(u) is the cross section for neutron production by inelastic

scattering. In terms of the (n, n') and (2, 2n) cross sections it is

oin(u) = 9, (v) +‘an’2n(u). (105)
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Since cin(u',E) is computed while Oin(u) is measured,
integration of‘oin(u,E) over E will not in general give cin(u).
Again we must impose a normalization. In the code, it is assumed
that oin(u',E) is linear in E between each successive tabulated
values. It is further assumed that if E takes on the values E;

and if there are P values of i in the tabulation, that

Epyp = 0
oin(u',o) =0
Ein < Ey

1 —

Then we can get a normalized cross section

oin(u')

oin’(u',E) = oin(u‘,E) 3 (106)

%.21{’1:1(“' sEj)t oy (0hE ) b (BmEy )
i=

]
In terms of 84 and Oin? the differential inelastic neutron

cross section is
o(u',u) =E Gin(u',E) , u'< U

1
*

= ? gi(u‘) 5] (E'-E-Qi)E, u' > U (107)'

1

Here u,  is the smallest lethargy at which fin(u’Qi) is given. For
1

) <u' < u, , where u, 1is the largest lethargy for which we use
1 2

the‘oin)(u’,E) data, the codes takes

U

o;n (u',E) = oy (u B (108)

*Eq.(107) assumes that the excitation energy Q4 equals the neutron

energy loss in the c.m. system. While not strictly true, this is
an adequate approximation for our purposes.
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Elsewhere we interpolate linearly in u', for both °in(u"E) and

gy (u').
In eq. (107),
E' = Eoe-u1 (Lo
Note that
y Q; < Eoe’“ . ' (11}

Substituting eq. (107) in eq. (100) and using eq. (107), we

have, dropping the spatial variable x,

S(u)

‘ u
S g(u',u)@(ur)du’

(o]

u

-S g(u',E)E ¢(u')dur, u < a

= 1
u

o
' l 1 ] ] ) ] T t t

= j 0 (U ,E)E §(u)du + z,]: ES g; (u )6(E*-E-Q;)P(u )du,
o A

u
1

u D> ukl (111)

In our mesh scheme, the lethargy takes on the value ., and

integration is by the trapezoidal rule. Let us define

k -1
E, o
Kk ' * -
6 =7 % {¢(ui)qin(ui’Ek)+ ¢(ui+1)°in<ui+l’Ek)} (U541791) 5
(112)
with
k, = k , o < ukl
kg 2 v 1)
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Ek anduk are ‘'related by the standard expression

Ek = Eoe (139:‘::

Then

Ui
Y ° ! ’ ! - TYT LN
cin(u‘,E)E¢(u ) du = Gy - 114y

o o

Also,

U.k |
Ej; g-i(u')‘a(E'’}‘:k"(2‘3;~)¢(l-1')du' =
4 E
ky

Eo Eo Ek dEt
g;(fn =2 ) §Un =2 )8 (E'-E,~Q;) —F
E E Y £

it

Ey

#

Eo Eo Ek « 1
gi(ln 'E?*_Q—;) ¢(En Ek"'Qi ) Ek+Qi H(Ekl-Ek-Ql) (1 5)

H is again the step function defined previously:

H(¢) = 1, £ >0
=0, £ < O. (3)
Let
E, +Q Q. u
ki i Kk
Q,;y. = =1 += e - (116)
ik Ek Eo
and
Vig = in aik. (117
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E, E, E, (
I —=— = fn o + In = U, =V, . 118
E +Q; E. E, +Q; k “ik

Substituting eqs.(114) and (115) in eq.(lll) and using eqs.
(116) and (118), we get finally

St = G * ¥ 85 (Vi Blu vy By ~By-Qy) - (119)

Eqs. (113),(109a), (3), (116), and (117) define all the parameters.
Eq. (119) holds at every spatial mesh pointj in the inelascic scatterina
medium. '
To determine what value of S(uk) to use at a boundary point of
an inelastic scattering medium, let us consider a situation where
there is one inelastic scattering medium to the right of spatial
mesh point j and another to the left. Then we assume that the total
source of inelastically scattered neutrons is represented as being

continuous at x. and linear between xj_1 and xj and between xj and

xj+l' Thus
j+l 5 ‘;1 5, T - '
X,
j-1 ] (120)
Here
and
(122)

Sja1,k= Sy -
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Then
5+S(uk
ik 5

(1235

In the spirit of the derivation of the flux &t an intdérface Ffor us=l,
eq.(123) should hold not for the donsity § of inelastically scattevoo
neutrons, but for the cross sections o;n(u,E) and gi(u). However,
prescription (123) is much simpler. In addition, the overall error

is small, probably much smaller than the error involved in the

assumption (102).
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ITII. Results

A. Carbon
Comparisons were made of SPM results with those of age
theory and of a method due to Kaper.2 The medium was carbon with

an assumed constant cross section. There is no absorption.

The flux given by age theory can be written

-X

1 e T
P(x, vy = o =
Here the geometry is that of an infinite plane source of strength
S(x, u) = 6(x) 5(u)
with no first flight correction.
T is the neutron age, given by
-
307¢
The age theory sclution is tabulated in Table I.

Kaper2 has developed a treatment which is essentially a
consistent expansion in powers of 1/A, valid also for variable
cross sections. Since one can look on the SPM as an expansion in
powers of 1/A, though not a consistent one (since it gives certain
higher order terms), it is of interest to compare the two methods.
Kaper has given results for the first order solution; i.e., that
good to linear terms in 1/A. The SPM equation contains in addition
the terms in 1/A2 and certain, but not all, higher terms. For

carbon (A = 12), the differences should not be great.
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For the comparison we use Kaper's solution including
first flight, that is, with a first flight correction, normalized
to the age theory results at 2x = 1, u = 15. Of the points given
by Kaper, this is the one for which age theory should be best
(small x, large u), and so the results were normalized accordingly.
This solution is shown in Table II.

We have two sets of SPM results for this problem. Both
used an E1 source., One, given in Table III, is the solution of
the third-order equation. The other, shown in Table IV, is the
solution when the third-order terms (i.e., Yy and 75) are assumed
zero. Note that the effect of the third-order terms in this
problem is negligible.

In comparing the solutions given in Tables I-III, we

note that agreement is very close at smaller distances, but for

larger values of x, the SPM solution is flatter - smaller for large u

and much larger for small u - than either the age or Kaper's solu-
tion. Certainly the increase for small u is an improvement. The
differences for large u are not great and it is not clear whether

or not they are significant.
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TABLE I. DIFFUSION THEORY (A = 12)

2
!ZZ
Q‘-l QA e- ::
' I’Jru

u =~ 1 2 5 8 10
1 1.06 0.726 0.053 - -
3 0.663 0.585 0.244 0.048 0,010
5 0.522 0.484 0.286 0.108 0.044
8 0.417 0.398 0.286 0.156 0.089
10 0.374 0.360 0.277 - 0,170 0.108
12 0.342 0.331 0.266 0.177 0.122
15 0.306 0.299 0.251 0,181 0.134
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TABLE II. KAPER'S APPROXIMATIONZFOR FLUX (A = 12)
2X
u 1 2 5 8 10

1 1.01 0. 661 0.073 - -

2 0.639 0.569 0.227 0.048 0.010
3 0.507 0.479 0.271 0.108 0.037
8 0.410 0.388 0.276 0.154 0.078
10 0.364 0.350 0.264 0.168 0.098
12 0.335 0.324 0.258 0.176 0.108
15 0.306 0.287 0.236 0.181 0.128
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TABLE III, SPM FLUX (A = 12) - WITH THIRD ORDER TERMS
Ix

u 1 2 5 8 10
1 1.07 0.760 0.098 - -
3 0.676 0. 605 0.280 0.070 0.020
5 0.534 0.499 0.313 0.131 0.053
8 0.426 0.408 0.302 0.165 0.079
10 0.381 0.368 0.286 0.167 0.083
12 0.347 0.336 0.267 0.162 0.082
15 0.305 0.296 0.240 0.149 0.076
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TABLE IV. SPM FLUX (A = 12) - WITHOUT THIRD ORDER TERMS

ZxX

1 2 b 8 10

1 1.09 0.728 0.096 - -

3 0.691 0.611 0.270 0.069 0.020
5 0.541 0.504 0.309 0.127 0.051
8 0.430 0.411 0.301 0.162 0.077
10 0.384 0.370 0.285 0.165 0.082
12 0.347 0.337 0.267 0.161 0.081
15 0.306 0.297 0.241 0.149 0.076

40



S TRt st 58 g U S

B. Hydrogen

A number of problems were run for hydrogen, since the
ability to treat hydrogen was considered a major part of the
program. Some used an 18-Mev source and some an 8-Mev source,
with x- and u-meshes of various sizes. Results for 8-Mev sources
are not yet available. All of the 18-Mev problems failed. The
reason is important and instructive.

All of the 18-Mev problems included the third order
terms. Basically, they failed because ) -1 and a1,-1 (eq. 67)
were too large. a;,could therefore be small and even negative.
If we were dealing with a delta function source, for instance,
i.e., a source of unity at (j,k) = (0,0), where j and k are
respectively the x and u-indices, this would imply that @$(1,0)<0.
This is obviously inadmissible. The situation with the E, source
was somewhat more complicated, but fundamentally the same. Not
only were some fluxes negative, but the error propagated from
iteration to iteration and the iteration procedure rapidly
diverged. It should be remarked that a,-1 and ) .y can become
too large only in the case of variable cross sectionms.

The conclusion from all this is that if the cross section
variation is too great, trouble can be expected from the third-
order terms. This bears on the problem of treating resonances.
If we had hoped to improve on the second order equation by adding
third-order terms, one must be extremely careful with variable
cross sections. We have not been able to deduce any real rules

for predicting when the third-order terms help.
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C. Modification of Diffusion Theory Current by SPM

To see how the additional terms in the SPM equation
modify the diffusion theory expression for the current, we have
two procedures. In one, we can assume that the change from age-
diffusion theory is a small perturbation and apply the derivatives
in the additional terms to the age-theory solution. In the other,
we look at the ratio of the additional terms in the difference
expression for the current to the diffusion term for one of our
numerical solutions. We will consider both methods, for a medium
with constant cross section and no absorption.

The age-diffusion solution is

P =2 e &
o5 Varr ,
with
T = u
302¢

The SPM expression for the current in a constant cross

section medium is

. 2
op ) g
J =7 :q32£ - O+ Ys%) §3 ;}

We are then interested in R, the ratio of the additional term

in this expression to the diffusion term.
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In our case

R RS W VR |
%3 I-v, * Toz I-v,

for an ‘isotropic flux.

We take derivatives of the unperturbed age theory

solution
2

inP=1tn () -7 tn (4r) - 5t 7 - 3=

1 [_x x jﬂ@)
-— +
30°¢ ( 272 s ot
1 1 2 ,'
" 3% (32?5 [F:—TZD

2
= X [3_1{]”
1262512 2

Thus the analytical approximation to R is

2 2
(e+"1\ 3- 3% (e vi 36"6xu1
Rgn = = (et —
an I'vo 602€T }
For carbon, in our problem,
¢ = 0.15779

T—_ . '
-V c 5

o=1

Then 3 [1 - 0.078895 xz]
= 0.10826 — 3
R.an . . 2u
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We compare this with the numerical approximation, Rhum’
in which the derivatives are evaluated by differences from our

numerical results. The results are shown in Table V.

TABLE V. EFFECT OF HIGHER ORDER TERMS ON THE CURRENT

 x (mfp) ‘ u R,nal ‘ R um
2 1 0.111 | 0.108
2 2 0.0683 0.0667
2 5 ©0.0304 | 0.0299
2 10 0.0157 0.0098
5 5 \ 0.0197 f 0.0194
5 10 | 0.0130 | 0.0075
10 5 -0.0188 | -0.0201
10 | 10 0.0034 | 0.0022

We note that except near the origin and for small
lethargies the SPM correction to the current is small - of the
order of a few percent or less. Where R.anal and Rnum differ

appreciably, the correction is negligible.
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IV. Operating Instructions - SPM Code

.
A. Changing Tape Designations

The 3 magnetic tapes required by the SPM code are assigned
by a small subroutine called CHANTP. The copy of the SPM deck
issued at the time of this report defines the problem input data
tape to be logical tape number 2, the output tape to be logical
tape number 3, and the tape which stores complete nuclide data
for a series of nuclides to be logical tape number 5.

The tape designations may be inconsistent with the monitor
system of a given 7090 installation. Therefore a simple process
for making the necessary changes has been provided. The subroutine

CHANTP is listed below.
SUBROUTINE OHANTP

(Common, dimension, and equivalence statements)

'NUTAPE = 5
KTIN =2
KTOUT = 3
RETURN

END (1,0,0,0,0,0,1,0,0,0,0,0,0,0,0)
Statements of CHANTP subroutine

KTIN defines the problem input tape, KTOUT indicates the
output tape, and NUTAPE denotes the nuclide data tape. To redefine

tapes for SPM:

1. Punch the proper logical tape number in the 3 statements
which define KTIN, KTOUT, & NUTAPE,

2. Remove the old binary CHANTP program and
3. Recompile CHANTP (and possibly execute a SPM problem).

The use of the new binary CHANTP subroutine in the SPM binary
deck or tape makes the code usable at the installation.
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B. Operation Instructions for a Problem Run

1. Since most 7090 installations will accept Fortran codes
only when under monitor control, only one provision (see below)
for console control of the SPM code has been made. It is generally
necessary to provide the 7090 machine operator with only

a. the SPM code in card deck or magnetic tape form,

b. the input data, usually on cards, for the series
of problems to be run,

c. the nuclide data storage tape (NUTAPE) which
generally will not be written on.

Sense Switch 6 must be up. In the usual case nothing further
can be done by the user of the program.

2. Console Control of the SPM code

If sense switch 6 is depressed the code will stop after
computing and outputiing a complete array of fluxes. The iteration
number of the flux computation loop will be printed both on-and-off
line. This console operation should be used only when time con-
siderations indicate that the problem being run should be terminated.
Depressing sense switch 6 will allow the program user to obtain all
information available concerning the last flux iteration at the
time the problem was stopped. The program user may then alter the
input of convergence conditions so that the further use of sense
switch 6 will become unnecessary.

NOTE: 1In the following input table we use the following definitions:

dp =a_y 1 dg = 21,0
dy = 3g, .1 dy =231
d3=ay 1 dg = 351
by =ay g dg = 81,1
d5 = a5 9 : 90 = Sk

where the apq‘and Sy are those in eq. (64).
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The columns described refer to the 72 columns available on a

standard IBM punched card.

Input Data for SPM Code

Category No. [Degsgigiion ?Format  Specific Input Quantity

1. g Titles and : (1246) | Date in columns (1-12)
{ problem i A problem identification
! ldentification number in columns (13-18)
: Data P Any comment in columns (19-72)
¢ i This data is printed in
] { i output and as page headings.

, ! ; |
2. i Fixed point ! (2413) | MXIFL,

or integer

Note that

i, s 4w s e

as zeroes.
Hence all

right hand
columns of

input data:

blank columns
are treated

integer data
must occupy

their fields

47

Maximum number of iterations
before problem terminates
itself. It is placed on the
first card of category 2
Columns (1-13)

KLIMIT,

Maximum number of lethargy
levels included in convergence
tests, Columns (4-6)

J2

thé number of spatial points,
including boundaries,

Columns (7-~9)

K2

the number of lethargy points,
including boundaries,

Columns (10-12)

1PCY,

the number of iterations on
the flux per printout of
abbreviated convergence data
(see output description).
Columns (13-15)

IMALP,

the number of flux iterations
at which an indication of
"Excessive Iterations" is
printed out both on-line and
off-line and beyond which all
flux convergence data is




Category No.

General
Description

. Format

Specific Input Quantity

2.

printed out; the problem
continues, however.
Columns (16-18)

MKO,

the mesh size of the lethargy
output printout. Though the
computation is carried out in
its latest stages for all of
the K2 lethargy points, output
occurs for only those points
R=l, 1+MKO, ... 1+nMKO, ... K2.
Columns (19-21)

MJO,

the mesh size of spatial point
output printout. Only the fluxes
corresponding to j=1, 1+MJO, ...
1+nMJO, ... J2 are printed out.
Columns (22-24)

IDEBUG,
an indicator.

If IDEBUG=20, there is no nuclide
data storage tape. Option 5,

category input then computes or

gbtains the necessary nuclide
ata.

. Columns (25-27)

MMT

the’number of entries in the mesh-
size table MTAB (see below).
Columns (28-30)

48

MTAB(I), I=1,MMT.

A table of the mesh sizes to be
used successive in the compute-
flux-array computation. The
table consists of pairs of mesh
sizes for space pt. mesh, and
lethargy pt. mesh, respectively.
Coarse mesh pairs, monotonically
decreasing, precede the finest
mesh size pair (1,1)which are then
followed by two zeroes. By fat
the most usual input for tKis




S—

Category No.

General
 Description

Format

Specific Input Quantity

2.

e A N, 2 T Y T A 0 v e

O S L s PP S e

49

able of MTAB, where MMI=4, is

olumns)

]

[ 4

i1, 1, 0, 0. Next(MMT x 3
gc

MIFLAG,
the number of entries for the

1 input table of flux arguments
{ data (see table ALPLAY in
1 category 3 input). Next three

columns.

KBGIHS,.

the number of the lethargy point

at which the arbitrary input of
the D10 (inhomogeneous source

i terms) begins.

Next 3 columns.

XV U T S 03

KIST,

the number of the last lethargy
pt. at which there will be
arbitrary input of the D

terms. All lethargy poiags
from KBGIHS to KIST will have
this input whenever KBGIHS # O.
Next 3 columns.

o A T

INONU,

the number of geometrically
defined regions, each of con-
stant nuclear composition.
Next 3 columns.

ID 10 FS,

If this indicator = 0, fission
is treated as absorption. At
this time the indicator must be
zZero.

Next 3 columns.

AT P o o Sy e o e oy I I . VNS s, SN TR o B

ID 10 IE,

If this indicator = 0, inelastic
scattering is treated as
absorption.

" At this time this indicator
- must be zero.

Next 3 columns.

i
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General

Description tFormat ‘ Specific Input Quantity

Category No.

1SOUR1

If this indicator = O, a table
will be required in category 6
input. This table is the
spatial source at the first
lethargy level, k=l.

: : If this indicator > O an E

; H source (as described in th& text)
is computed with its origin at
the spatial point x = 0.0.

i ; Next 3 columns.

2.

et s h st il

-

——

ip 10,

¢ If this indicator = 0, there is
no arbitrary input of D sources,

If this indicator 0 an lgput

. table FIST, category 7, will

load D, sources directly from

input }gr each lethargy level

i from KBGIHS to KIST.

{ Next 3 columns.

o

e

ot

IROCO.
If this indicator = 0, the compu-
tation of the flux array will
" proceed by row iterations only.
If IROCO = O, the flux computa-
tion will proceed alternately
by row and column iterationms.
Next 3 columns.

ISYMM

If this indicator = 1 the flux
configuration will be computed
symmetric about the left edge

of the array (usually x = 0).

{ This condition of symmetry applies
only for IROCO = O, i.e.

row iteration only used in the
computation of flux.

i Next 3 columns.

I I g Ao < s oy o

e

50 |




o AT it B S e s . ATt

General

Category No. Description Format Specific Input Quantity
3. Floating 9E(8.2) ALPLAY (I), I = 1, MIFLAG.
Point . This table defines the spatial
Input Data agd é:thargy coordinates, for
: the finest mesh, of the flux
E:gh Single array. The spaée defining
occzgies 8 data is X1s Axl, Xyy DXy, eee
columns, XTNONU? AxINONU’ xINONU+1’ 0.0.
E:gsyiggut x, 1is the coordinate of the
the form _ lefthand edge of the mth physi-
LEff x 10— cal region; Ax 1is the constant
%sfgggizzged interval within that region.
iﬁ the8 Spatial data is terminated by a
colum field constant interval distance=0,0.
° The mesh point distances give
(A certain the points for the finest
economy is spatial mesh: hence there are
permitted by J2 such points. The table con-

Fortran in
preparing E
format
Floating
Point input
numbers.

See ITM
Reference
Manual, 709/
7090 FORTRAN
PROGRAMMING
SYSTEM p.45,
bottom,

51

tinues with the beginning entry
of the lethargy coordinates
(usually 0.0). Then follows the
constant Au, the maximum
lethargy, and the indicator
value 0,0, With 1 spatial
region, therefore, there would
be 8 entries or 64 columns to
this table. Where INONU = no.
of regions, use next 16 INONU +
48 columns,

E,
criterion for flux convergence.
The maximum residual obtained
from the comparison of each old
flux to the newly computed flux
must be less than this value for
convergence to occur. Next 8
columns,

E;.
1
E. is a very small positive

1

number., The number of flux
values, whose absolute value in
any given iteration is smaller

than El’ is counted and stored

in NCON (location 53151g). Next
8 colums.

~ ENZRI

The energy at which lethargy

- u = 0 for the particular problem.
. Next 8 columms.
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Category No.

General

| Description

' Format

Specific Input Quantity

3.

o £ et

FLI

If FLI > O, all values of the
flux table are initialized to
the value FLI.

If FLI ¢ 0, the flux arra

$. . is initialized to e’sz)(xf
FLt is usually set equal to
zero. Next 8 columns.

AT st

W is an acceleration factor.
1f ¢, 1,is_the flux computed
on thd (i+l)st iteration,
¢i+1 is replaced by(w¢i+1
+ (L-w)@.). If w=l, this
proceduré gives nothing new
: and the relationship is
;{ skipped. Next 8 columns.

! XO0.

{ If X0 > 0 the left edge

¢ boundary of the flux array is
§ initialized to the value of

i X0. If X < O the left, or

{ X_, bound8ry fluxes are read
i in by input. Next 8 columns.
i
{
!

i XN.

{ If XN > 0, the right edge

; boundary of the flux array

i is initialized to the value

E of . If < 0 the right

; hand boundary fluxes are read
 in as input. Next 8 columns,

La

nuclide
identifica-
tion for
region

2413

IELEW (I) I = 1,24
The nuclide identification
numbers for all nuclides
within the first spatial region
- are read in on.a single card,
in numerical order. These
' numbers correspond to nuclide
| data stored on tape NUTAPE,
~ the nuclide data storage
tape. Each entry occupies 3
columns., This table takes up
' n3 columns of one card, when
n=number of nuclides within
the region of computation
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Category No. Deg::i;:ion kormat [ Specific Input Quantity
4b - density of 9 (E8.2) 1DENSIT(I),
nuclides i ithe density (gms/cc) for each
{ for a given { iof the nuclides above.
- region | ‘This pattern of a single card
; ;of IELEW data (4a category
; !card) followed by the corres-
' iponding density card(s)
i (4b category card(s))is
‘maintained until all INONU
regions of the problem have
‘their composition defined.
.Each entry has 8 columns.
i ;This 4b table occupies a
! ;total of n8 columns, where
] i :n=number of nuclides within
} i the region being computed.
5. optional
{ input.
IDEBUG=20
indicates
! there is no
! nuclide data ,
! storage tape , {
{ and we therefore
{ read category |
i 5 input. -
: o o i s st
5a { IDEBUG is a . (E13.7, |ENZR,
} category 2 . 16,I1) :the energy corresponding to
! indication zero lethargy for the lethargy

[

i tm

R

53

; argument table of the cross-

{ section data. This must be

i the maximum energy for the
cross section table. First 13
columns floating point form.

{ NOXSAG,

! the number of entries in the

: lethargy table corresponding
{to cross section input. Next 6
" columns, fixed point.

| IBUGL,

_an indicator. Next column only.
{ If IBUGl=l we have constant

i cross sections. Therefore

i we read a.,c T AR L YR /A and
‘75 tables directly.




Category No.

General
Description

Format

Specific Input Quantity

S5a

5b

; form + ffffff x 10

" for it.

Each of categories 5b, 5c¢, and 5e
through 51, require a table of
numbers to be prepared for input.
Each table entry is in floating
point form where a $ggber in the
is ex-
pressed + .ffffffE+ee. It is
placed to the extreme right of
the 13 column field reserved
One IBM input card can

. hold up to &4 entries. (65 columns).

55(13.7)

" XSLEAG (I)I= 1, NOXSAG,

the table of lethargy arguments
for all cross sections. See
note following 5a, just above.

5¢i

.‘" 5 L]
. option is

Optional
input: if
IBUGL=1,
we have

constant

cross sec-

tion input.
Therefore
read Input
This

valid only
if there
is 1 region.

I

:5(E13.7)

e i e P S et S i

. cross section

! ALFA 3(1)

' GAM  3(1)

The following will form tables

; with constant values

XSMATS(1) the total macroscopic
columns (1~13)

ALFAO (1) value of a columns(14-26)
ALFA 1(1) value of alcolumns(27 39)
ALFA 2(1) value of azcolumns(40 52)

of a 3columns(53 65)
of o, Dext card

4 columns(1-13)
of columns (14-26)
of columns (27-39)
of

- columns (40-52)
of

value
ALFA 4(1) value
value
GAM 4(1) value
GAM 5(1)

XSEE 91)

value

value (1)
co?umns(53-65)

54
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Category N01 Degggigg}on - Format Specific Input Quantity
{
Sc i Optional
‘  Input. If
I IBUGL 4 1,
¢ we have non-
i constant !
cross sec- !
tion input {
given in 5d- b
5e. This 2
option per- !
mits arbitrary: ;
introduction :
of SPM i :
coefficients ¢ !
without refer-: :
ence to NUTAPE: !
tape.
5d 17,3A6, ' NUCLNO,
2E15.6 * the identification number of
' " the nuclide for which we are
; reading in cross section data
i ! columns (1-7)
’ " NAME, a 18 character title for
. this nuclide. Columns (8-25)
- AW, the atomic weight for
§ this nuclide, columnf (26-40)
{ { USQ, the quantity <p™>
{ columns (41-65)
Se | S5E13.7 XSMIT (I) I=1, NOXSAG
{ ops OF microscopic total cross
i - sections in barns
i See note following category 5a
; description.
5f . { 5E13.7 XSMIS (I) I=1, NOXSAG
! i o_., or microscopic scattering
: i . cfoss section in
: See note following 5a
! description.
5g ; (5E13.7) | ClO(I) I=l, NOXSAG
: ' SPM coefficient defined in text.
See note following 5a descrip-
" tion.
5h (5E13.7) C20(I) I=1, NOXSAG
- See note following 5a description.
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General

Category No.  Description Format Specific Input Quantity
51 (5E13.7) C02(I) I = 1, NOXSAG
See note following 5a description
5] (5E13.7) Clz(I) I = 1, NOXSAG
' See note following 5a description
5k (5E13.7) | WVO(I) I = 1, NOXSAG
See note following 5a description
51 (5E13.7) | WV1(I) I = 1, NOXSAG
See note following 5a description
Note that if IDEBUG ¢ 20, all
category 5 and 6 data are read
from the nuclide data storage
tape NUTAPE.
6 Optional (9E8.2) FLUX(I) I = 1, J2
Input. Fluxes at lethargy zero level,
If ISOUR 1 - including corner points.
= 0, read - J2 x 8 columns, with at most
the lethargy 9 entries on a card.
= 0 source
7 Optional (9E8.2) | FIST(I)
- Input. If Arbitrary Dy, sources. For
D010 = 1, h leth level from KB
read in eac ethargy level from KBGIHS
tables of (category 2) to KIST (categor
arbitrar - 2), inclusive, J2 (category 2
D sourZes  values of D, j,k will be read
710 ‘ >
in, from X, to X
* (KIST-KBGIHS+1l) sets of
(J2 x 8 columns)
8 Optional (9ES8. 2) FLUX(I)
“Input. K2 entries of the left or Xo
If X0 <0 . boundary values of flux
read in X starting from lethargy evel k=1.
side (K2 x 8) columns
boundary
condition
9 ' Optional (9ES8.2) " FLUX(I)
Input ‘ ' K2 entries of the right or
If Xy < 0, | boundary values of flux,
read in starting from lethargy level K=1.
XN side ‘
boundary
' conditions
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V. SPM Qutput

The SPM output of results is initiated by a printout of
a) the names_of nuclides, and b) their corresponding densities
in‘nuclei/cm3 in each successive region.

By a proper choice of the input indicators, IPCY and IMALP
(category 2 input), the SPM‘pro%ram may be set up to print out con-

;ergence data, for each or any flux iteration number, in the following
orm:

Line 1: (flux iteration number), (number of points tested for
convergence), (average residual), (maximum residual),
(j position of max. residual (space)), (k position
of max. residual (lethargy))

Line 2: (Bl, Minimum Value of Flux), (B2 Maximum Value of Flux),
(absolute value of maximum of (B2,-Bl))

At iteration IMALP and at completion of the problem by either con-
vergence or divergence, SPM prints out problem identification
comments. SPM briefly prints out why the problem ended. It then
prints the flux array requested by input indicators MKO and MJO
(category 2 input). The energy level and space position identifying
each element of the flux array is printed on each page. :
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VI. GENUC - Cross Section Processing Program
A, Purpose

The purpose of the GENUC program is to produce NUTAPE
from microscopic cross section data. It produces also an edited
version of NUTAPE for printing. A printed record is necessary
for the operator to have in order to identify the various
nuclides. The following data are given on NUTAPE for each
nuclide. A, %>, oy, 0g, Cyg» Cpgs Cpgs Cpps Vo @nd vi. GENUC
has an option whereby Cio and vy can be put equal to zero. This
is equivalent to dropping the third-order terms. This option is
denoted in the following by vy = 0.

All data thus collected for a given nuclide, along with
title information, are written on tape as a single record, in the
exact order SPM requires.

GENUC provides for the sequential storing of many
ﬁuclide-data records on the same tape. A necessary restriction
of storage on one tape is that each nuclide must use the same
table of lethargy arguments. The lethargy table and title
information to identify this particular tape are found as the
first record.

B. Tape Unit Designations

GENUC consists of a main program and one subroutine
CHANTP. Because of the organization of the subroutine CHANTP,
the GENUC code, like the SPM program, may be run at any 7090
installation regardless of the standard input and output tape

designations of that installation.
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The GENUC code deck issued with this report uses the

logical tape units listed in the table below.

Unit Use
2 Input
3 Output, Hollerith
5 Output of nuclide-data, in binary form,

for use with the SPM program
The procedure for changing the logical tape designations that

GENUC uses is exactly the same as for the SPM code.

c. Input Preparation and Restrictions

An input deck for the preparation of a new data-
storage tape (i.e. when the input quantity NP@NTP = 0) must
carry both a lethargy division table and its associated base
energy for u = 0, both of which will be maintained as a standard
for all successive lethargy-dependent variables on this tape.
When NP@NTP > 0, the lethargy table will be assumed present
within the first tape record and the input deck need only con-
tain information directly related to the given nuciide. Any
number, NPNUC, of different nuclides may be added to the tape,
with two restrictions: 1) GENUC provides no interpolation
facilities for non-standard lethargy arguments; and 2) the use
of the y- option (defining v to be zero or non-zero) remains the

same for all NPNUC nuclides. When the GENUC run is complete for

these NPNUC records, the GENUC program starts anew. At this time

for the new run, the y option of course may be changed.
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NpNUC
NPPNTP

IBUG

XSLEAG(I)

NPXSAG
NIDTAP

ENZR
NUCLN@
NAME

AW

UsQ
FL(KK,L)

XSMIT (L)

XSMIS (L)

GENUC DEFINITIONS
Number (Index maximum) of nuclides to be added onto
data storage tape

The actual number of nuclide records on the nuclide
data tape. If 0, then we prepare a new nuclide tape.

Indicator for y option
When IBUG = 1, the tables Cl2(L) and WV1(L) are set
equal to zero for all lethargies L.

Table of lethargy arguments for cross-section tables
with a NPXSAG number of entries.

The number of entries to above table, < 200.

A label, or title, to be printed out for identification
of a particular nuclide data tape

The base energy for which lethargy is defined as zero
Number-label of a nuclide
18 Alpha-numeric character (3 cell) title for a nuclide
Atomic weight of the nuclide
2
<u>
Legendre coefficients f, for the nuclide. Here
KK = £ + 1 ’
There are 7 separate such tables for KK = 2 to KK = 8
L is the lethargy index
Each such table has NPXSAG entries in it, corresponding
to the XSLEAG table of arguments

Microscopic cross-section in barns corresponding to
XSLEAG lethargy table, NPXSAG entries

Microscopic cross-section in barns corresponding to
XSLEAG lethargy argument table, NPXSAG entries
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OUTPUT OF GENUC PROGRAM

The First Record has
NIDTAP
NOXSAG
XSLEAG(I), I = 1, N@XSAG
Each successive record describes a distinct nuclide and contains:
NUCLN§
NAME 18 characters
AW atomic weight
XSMIT (L) O
XSMIS(L) o scattering
C10(L) (Note that ¢, defined in SPM text, is
C20(L) never distinct from 010(1))
C02(L)
* Cl2(L)
Vo(L)
* V1(L)

end of record

* We note that where IBUG =1(Gl input), the Cl2(L) and also the
V1(L) tables will be set equal to zero.
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